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In bootstrap percolation, sites are occupied with probability p, but those with 
less than m occupied first neighbors are removed. This culling process is 
repeated until a stable configuration (all occupied sites have at least m occupied 
first neighbors or the whole lattice is empty)  is achieved. For re>f mi ,  the 
transition is first order, while for m < ml it is second order, with m-dependent 
exponents. In  probabilistic bootstrap percolation, sites have probability r or 
(I - r )  of being m- or m'-sites, respectively (m-sites are those which need at least 
m occupied first neighbors to remain occupied). We have studied the model on 
Bethe lattices, where an exact solution is available. For m = 2 and m ' =  3, the 
transition changes  from second to first order at r~ = 1/2, and the exponent  11 is 
different for r < 1/2, r = 1/2, and r > 1/2. The same qualitative behavior is found 
for m = I and  m '  = 3. On  the other hand,  for m = 1 and m'  = 2 the transit ion is 
always second order, with the same exponents  of m = 1, for any value of r > 0. 
We found, for m = z - 1 and m' --- z, where z is the coordination number  of the 
lattice, that Pc = 1 for a value of r which depends on z, but is always above zero. 
Finally, we argue that, for boots t rap percolation on real lattices, the exponents 
v and/~ for m = 2 and m = 1 are equal, for dimensions below 6. 

KEY WORDS:  Correlated randomness;  bootstrap percolation; phase 
transition; critical exponents; Bethe lattice. 

1. I N T R O D U C T I O N  

In recent years, much effort has been spent on the study of systems with 
correlated disorder. (1'2) The present scenario is as follows. Systems with 
short-ranged correlations are in the same universality class as their 
uncorrelated counterparts. Examples are high-density percolation ~3) and 
site-bond correlated models. ~4) On the other hand, long-ranged correlations 

I Depar tment  of Theoretical Physics, University of Oxford, Oxford OX1 3NP, England. 
2 On leave from Universidade Federal de Santa Catarina, Depto. de Fisica, 88049, Floriandpolis, 

SC, Brazil. 

1035 

0022-4715/93/0200-i035507.00/0 �9 1993 Plenum Publishing Corporation 



1036 Branco 

may lead to quite diverse critical behavior. Depending on how fast correla- 
tions decay with distance, new exponents and, in some cases, first-order 
transitions are found. (~'2) Many models exhibit long-ranged correlation 
effects, but, among them, our interest is directed to the so-called bootstrap 
percolation (BP) problem, 3 where all the features cited above are present. 

In this model, sites on a lattice are randomly occupied with proba- 
bility p, but those with less than m occupied first neighbors are rendered 
unoccupied; this culling process is repeated until a stable configuration is 
achieved (the whole lattice is empty or all occupied sites have at least m 
occupied first neighbors). The usual percolation problem (61 is reobtained 
for m = 0; the case m = 1 is equivalent to m = 0, since only isolated sites 
(which do not contribute to the critical behavior) are culled (from now on 
both m = 0 and m = 1 will be referred as m = 1 or as usual percolation). 
The critical concentration Pc (the value of p below which no infinite clusters 
exist) is the same for m =  1 and m = 2; the reason is that, in the latter 
case, only parts of the dangling ends of  the infinite cluster are removed. 
The backbone of the infinite cluster remains the same as for m = 1, thus 
allowing for connection between extremes of the lattice. We will comment 
further on this topic, when discussing the exponents for rn = 2. For m >~ 3 
critical exponents and probability are lattice dependent; for m>~mx the 
transition is first order, where m~ equals 3 for the square lattice and equals 
4 for triangular and simple cubic lattices. For  all Bravais lattices studied, 
all first-order transitions happen at p c =  1, which is the exact critical 
concentration for m = 4 and 5 on triangular and simple cubic lattices and 
for m = 3 on the square lattice. (5'~'8) For  these values of m, the approach to 
the thermodynamic limit, e.g., in numerical simulations, does not follow the 
usual finite-size scaling prediction~ 

p,.(L)-p, .(oo ),.,, L -~/~ (1) 

where L is the size of the (finite) system studied. Instead, the approach to 
the infinite-size limit has a logarithmic or double-logarithmic dependence 
on L. ~5) With regard to second-order transitions for m > 2 ,  the results 
suggest the following. For  m = 3 on the triangular lattice, p,. = 0.628 + 0.001 
(well above the exact value p, .= 1/2 for m =  ltl~ and the numerically 
calculated exponents seem to be the same as for usual percolation, m~ 
al though more precise evaluations are needed. Recent results for m = 3 on 
the simple cubic lattice (12~ point to a new behavior for the exponents: while 
v is the same as in usual percolation, fl is above the value for m = 1. For  
Bethe lattices, exact calculations show that  the transition is first order for 

3 See ref. 5 for a review on bootstrap percolation and for a comprehensive bibliography on the 
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m/> 3 with fl = 1/2, while for m = 1 and 2, the transition is second order 
and fl = 1 and 2, respectively (13~ (these results hold for any value of the 
coordination number z of the Bethe lattice). We would like to stress that, 
for percolation, Bethe-lattice exponents hold at and above the upper 
critical dimension d, = 6. 

The motivation for the introduction of BP models comes from a variety 
of physical systems, such as fluid flow in porous media, (14) crystal field effects 
in magnetic materials, ~13) etc. In the second case, the connection to BP is 
made through the Blume-Capel Hamiltonian(15); in this model, the crystal 
field A leads to a nonmagnetic ground state and a first excited ferromagnetic 
state, with difference in energy between these states proportional to zl. In a 
mean-field picture, exchange interactions J can be seen as magnetic fields, 
which split the excited state, thus changing the ground state to a ferro- 
magnetic one, for suitable ratios A/zJ, where z is the coordination number 
of the lattice. Assuming this to be the picture, dilution (replacement of 
potentially magnetic atoms by nonmagnetic ones) diminishes the influence 
of the exchange interaction, through the value of z. So, one can infer that 
only potentially magnetic atoms with a minimum number m of magnetic 
first neighbors will develop a magnetic moment. This dynamics is modeled, 
at zero temperature, by the BP model. 

Now, suppose that the crystal field, instead of being uniform, follows 
a random distribution: 

~(zt i )  = r6(A i -  zl) + (1 -- r) 6(z/i - ~')  (2) 

where Ai is the crystal field acting on site i and 6(x) is the Dirac delta func- 
tion. Thus, the number of magnetic first neighbors necessary to change a 
given potentially magnetic atom into a magnetic one will depend on the 
value of Ai: atoms on which a crystal field A (z/') acts will need m (m') 
magnetic first neighbors. A more appropriate model to describe this 
behavior at zero temperature is the so-called probabilistic bootstrap per- 
colation (PBP). 4 In this model, sites on a lattice are randomly occupied 
with probability p, but only those with a given minimum number of 
occupied first neighbors will remain occupied, this number depending on 
the site through a distribution analogous to Eq. (2). In other words, each 
site has a probability r or ( 1 - r )  of being an m- or m'-site, respectively 
(m-sites being defined as those which need at least m occupied first 
neighbors to remain occupied). Our motivation to introduce this model is 
to study the crossover between integer values of m; this can be done by 
tuning the value of r from 0 to 1. To the best of our knowledge, this ques- 
tion has not yet been addressed. It may allow, for instance, a first-order 

4 This name was proposed by D. Stauffer in a private communication. 
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phase transition with Pc ~a 1, for m = 3 and m' = 4 on the triangular lattice. 
In this paper we study the PBP on Bethe lattices, where an exact solution 
is available; critical exponents calculated in this lattice hold at dimensions 
d/> du and, moreover,  may give important hints about the critical behavior 
on Bravais lattices. 

This paper is organized as follows. In next section, we discuss the 
formalism to solve the model on Bethe lattices, and present and discuss the 
results. In the last two sections we discuss the exponents for m = 2 and 
summarize the results. 

2. F O R M A L I S M  A N D  RESULTS 

The fact that on Bethe lattices z independent branches emerge from 
each site allows for an exact solution of usual percolation (6) and BP 
models (13) as well as for a variety of other models. The solution for PBP 
follows closely the ones for the two models cited above. We begin by 
defining R as the probability that a ,given occupied site A is not connected 
to an infinite cluster through its first neighbor B. Recalling that B has 
probability r of being an m-site and probability ( 1 -  r) of being an m'-site, 
one can write 

f m--2 R = l - p + p  r ~. C ~ _ I R ( ~ - ~ - ' ~  
n=0 

m'--2 t + ( 1 - r )  Y~ C7_1R~-1-"~(1-R) ~ (31 
n=O 

m, m' = 2, 3,..., z -- 1, z. 
This equation can be understood as follows: A is not linked to an 

infinite cluster containing B if B is not present, or if B is present and is an 
m-site (probability r) but has less than m occupied first neighbors, or, 
finally, if B is present and is an m'-site (probability 1 " r )  but has less than 
m'  occupied first neighbors. This equation holds because only infinite 
clusters are allowed on the Bethe lattice, for m >/2. We note that the m = 1 
equation for R is the same as for m = 2, namely 

R = 1 - p  + p R  ~z- ~) (4) 

The probability that a site belongs to an infinite cluster is given by 

f z~m z--rn' P ( p ) = p  r C ' ~ R " ( 1 - R ) ~ - " ~ + ( 1 - r )  ~, 
n=O n=O 

c7R"(1 - R) ~-"~} (5) 
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m, m' = 1, 2 ..... z -  1, z; i.e., the site must be occupied and have at least m 
(m') occupied first neighbors in the case it is an m- (m'-) site. For  r and 
m equals to 1, we regain the usual percolation result, while for r = 1 we 
regain BP. 

In order to obtain P(p), we have to solve Eq. (3), which is of order 
z -  1. Since R = 1 is always a solution, it is convenient to express it in the 
form 0 =  (1 - -R ) f (R ,  p, r) and solve for 

f (R,  p, r ) =  0 (6) 

The solution R of the latter equation is then used to calculate P(p) through 
Eq. (5). The dependence of P(p) on p near Pc is defined through 

P(p) - P(p+ ) ~ A(p --pr p --+p+ (7) 

For second- (first-) order, transitions, P(p~)  equals (is aboye) 0. 
For  m = 1 and rn' = 2, Eq. (3) reduces to Eq. (4); so it turns out that 

Pc = 1/(z - 1 ) for any value of 1 ~> r >/0, which is the expected result. The 
transition is always second order and the exponent/~ is given by 

/~_ ~1, r > 0  
- ( 2 ,  r=O (8) 

with an amplitude A proportional to r, for r # 0. The fact that for any value 
of r > 0 the exponents are the same as for r =.1 is due to the presence of 
dead ends in the infinite cluster for r > 0. The number of sites in the infinite 
cluster decreases as r--* 0, but this is reflected in the behavior of the 
amplitude A. Figure 1 shows P(p) as a function of p for rn-- 1, m ' =  2. In 
the following section we will comment on the expected behavior for these 
values of m and m' on Bravais lattices for dimensions below 6. 

For  rn = 2  and m ' =  3, we expect that the transition changes from 
second to first order at an intermediate value of r: we call this value r~. It 
can be calculated as follows. From the z -  1 possible solutions to Eq. (6), 
the physical one satisfies R(p--  1 ) =  0. Fo r  first-order transitions, this solu- 
tion holds from p = 1 down to p,., where R(p,.) ~ 1; below this value of p, 
the only physical solution is R = 1. Also, the derivative dR/dp diverges at 
p =p,. for first-order transitions. (~3) On the other hand, for second-order 
transitions R(p,.)= 1 and dR/dp is finite at Pc. The border between these 
two behaviors is signaled by a divergence of dR/dp at R = 1. Imposing this 
on Eq. (6), we find r~ --- 1/2, for any value of z. It is also easy to show that 

dR/dp..~ - ( p - p c )  -1/2, p ~ p,~, r =  1/2 (9) 
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Fig. 1. Order parameter P(p)  for PBP with m = 1 and m' = 2, on a Bethe lattice with z = 6. 
Curves (a) and (b) represent r =  1 and r = 0 ,  respectively, and the curve in the middle 
represents r = 1/2. 

For r~> rl ,  the critical concentration Pc is given by Eq. (6) with R =  1: 

Pc = 1 / r ( z -  1), Vz (10) 

We give Pc for some values of r below rl in Table I: as expected, Pc 
increases for decreasing r. For  the exponent/Y we obtain 

2, 1 >~r> 1/2 

/~= 1, r =  1/2 (11) 

1/2, 1/2 > r >i 0 

Table  I. Values of  pc(r) ,  R ( p  +, r ) ,  and P ( p + ,  r) for  
P B P  on a Bethe  Lattice w i th  z = 6 ,  m = 2 ,  and m ' = 3  ~ 

r Pc R(p,":, r) P(p,) ,  r) 

I/2 0.40 1.00 0.00 
1/3 0.50 0.78 0.11 
1/4 0.53 0.71 0.17 
1/5 0.55 0.68 0.20 
0 0.60 0.58 0.29 

~A similar table for m = 1 and m ' = 3  would change only in the 
values for P(p~. , r). 
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N o t e  that,  a l though  the transit ion is second order for  r = r~, fl is different 
f rom the one ob t a ined  for r > 1/2 [see Fig. 2 for a pic ture  of P(p) for  this 
case ]. 

We  have also studied the PBP  for m = 1 and rn' = 3. All results related 
to the values of  Pc and  rl are the same as for m = 2 and m ' =  3, name ly  
pc= 1/r(z-  1) and  rl = 1/2. The reason is that  Eq. (3) is the same for m =  1 
and  m = 2 [cf. Eq. (4)] .  This equivalence does not hold  for Eq. (5), so the 
exponen t  fl has a different behavior:  

I 
1, l ~ > r > l / 2  

f l =  1/2, r = i /2 (12) 

~1/2, 1 / 2 > r > f 0  

F o r  r = q ,  fl is the same as for 1/2 > r>/O, but the transit ion is second 
order  (see Fig. 3). 

Finally, we studied the case rn = z - 1  and m'= z. The transi t ion is 
a lways  first o rder  with fl = 1/2, as expected, and the value of Pc increases 
with 1 -  r, reaching the upper  limit 1 (the critical concentra t ion  for BP  
with rn = z) at a value of r, r0, given by 

r o = ( z -  2 ) / ( z -  I) (13) 

P(P) 

0 .2 .4 .6 .8 
P 

Fig. 2. Order parameter P(p) for PBP with m = 2 and m ' =  3, on a Bethr lattice with z = 6, 
for the following values of r: (a) 1, (b) 3/4, (c) 1/2, (d) 1/4, and (e) 0. 
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Fig. 3. S a m e  as for Fig. 2, for m = 1 and  m '  = 3. 

So, Pc = 1 is always obtained for a value of m below z. In particular, note 
that ro ~ 1 as z ~ oo; this is expected, since, for large values of z, the 
probabili ty that a site has at least z -  1 first neighbors occupied is given by 
pZ + zp(~-  1)(1 _p ) ,  which is negligibly small for p ~ 1. 

3. B R A V A I S  LATTICES 

In this section we briefly outline the possible critical behavior for PBP 
on Bravais lattices. 

For  m = 1 and m'  = 2 on Bravais lattices, we do not expect the same 
picture as on Bethe lattices, since it can be conjectured that, for BP on 
dimensions below 6, the m = 2 case is in the same universality class as usual 
percolation. The argument  goes as follows. With regard to the exponent v, 
Adler and Stauffer (12) argued that v2 = vl, where the subscripts refer to the 
values ofm.  The reasoning is the same a s t h a t  applied by Coniglio, C16) who 
showed that  v is solely determined by the number of cutting bonds in the 
backbone of the infinite cluster (cutting bonds are those that, if at least one 
is cut, the cluster is broken into two disconnected parts). Since this number  
is the same for m = 1 and rn = 2 (see below), v2 = Vl for all dimensions d. 
On the other hand, it is expected that fll <~ f12 <~ flbb, where flbb is the expo- 
nent for the backbone problem (2"12~ (at and above d =  6, the Bethe lattice 
result holds and flz = Ebb). The reason is that the infinite cluster for m = 2 
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is larger than for the backbone problem but smaller than for m = 1. As dis- 
cussed in the Introduction, the difference between the infinite clusters for 
m = 1 and m = 2 is that, for the latter, a fraction of the cutting bonds (those 
at the end of the dangling structures) is removed. In ref. 16 it is shown that, 
in dangling ends of size l,~ ~ (correlation length), the number of cutting 
bonds goes to zero at Pc, while for dangling ends such that l,~ ~, the 
number  of cutting bonds, Nob diverges as I P -  Pc [ -  1, leading to Ncb "~ L 1/~. 
On the other hand, the number  of sites in the infinite cluster scales as 
N ~ L  a-a/v, where L is the size of the system. Since i / v < ( d - f l / v )  for 
2 ~< d < 6, the number  of cutting bonds is a set of  null measure, compared  
to the number  of sites in the infinite cluster. As the cutting bonds at the 
extremes of the dangling ends form a subset of the total number of cutting 
bonds, the culling process for m = 2 will remove an irrelevant fraction of 
the sites and we expect r2 = ill. Simulations in two (11~ and three c~2) dimen- 
sions support  this picture. So PBP on Bravais lattices for m = 1 and m'  = 2 
is trivial, in the sense that for all values of r the critical behavior is the 
same. 

Nevertheless, new features are expected for rn = 1 and m'  > 3. Since for 
the former the transition is second order, while for the latter it is first order 
with Pc = 1, a picture similar to the case m .= 1 and m '  = 3 on Bethe lattices 
may arise; one may find first-order transitions with Pc ~ 1 and a different 
universality class for some intermediate value of r. However, one cannot  
exclude the possibility that rl = ro, in which case there would be no range 
of r such that the transition is first order but Pc ~ 1. Another point of inter- 
est is how the "large-void-instabilities argument ''(7~8'13) would change for 
PBP: this can give a hint on the existence of a new universality class for 
intermediate values of r as well as for the value of ra. Studies are now being 
carried out using real-space renormalization group  (RSRG) procedures 
and Monte  Carlo simulation. While the former is convenient for studying 
universality classes, the latter is more adequate for an accurate evaluation 
of critical exponents. 

4. S U M M A R Y  

We have studied the PBP model on Bethe lattices: when m ' =  3 is 
involved a new critical point is found for 1 > r > 0, which is the border  
between second- and first-order transitions. In the R S R G  context, this criti- 
cal point is an unstable fixed point. This behavior  may be present, for 
instance, in the PBP on the triangular lattice, for m = 1 and m ' =  4 (where 
it is necessary that r 1 :~ ro, in order to observe first-order transitions with 
Pc ~ 1 ). For  m = 1 and m'  = 2, the exponent fl is the same as for m = 1 for 
any value of r above zero. This behavior is explained by the presence of 
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finite clusters for any r > 0. For m = z - 1 and m' = z, ro (the value of r for 
which Pc = 1) is always above zero. Finally, we argue, based on the fractal 
dimension of the number of cutting bonds, that BP with m = 2 is in the 
same universality class as usual percolation. 
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